Dạng hình học phân tử Lưỡng chóp tam giác (Trigonal Bipyramidal Molecular Geometry)

by tudienkhoahoc
Dạng hình học phân tử lưỡng chóp tam giác (Trigonal Bipyramidal) là một mô hình hình học phân tử quan trọng, mô tả sự sắp xếp không gian của các nguyên tử trong một phân tử hoặc ion khi nguyên tử trung tâm được liên kết hóa học với năm nguyên tử hoặc nhóm nguyên tử (còn gọi là phối tử) khác. Các phối tử này định hướng trong không gian sao cho chúng chiếm các đỉnh của một hình lưỡng chóp tam giác, nhằm tối thiểu hóa lực đẩy giữa các cặp electron liên kết theo lý thuyết VSEPR.

Hình dạng

Để hình dung cấu trúc này, hãy tưởng tượng hai hình chóp có đáy là tam giác đều được ghép lại với nhau tại mặt đáy chung. Nguyên tử trung tâm của phân tử nằm tại tâm của tam giác chung này. Mặt phẳng chứa tam giác chung này được gọi là mặt phẳng xích đạo (equatorial plane).

Trong cấu trúc lưỡng chóp tam giác, có hai loại vị trí khác nhau cho các phối tử:

  1. Vị trí xích đạo (Equatorial positions):ba phối tử nằm trên mặt phẳng xích đạo, tại ba đỉnh của tam giác đều. Các phối tử này được gọi là các phối tử xích đạo.
  2. Vị trí trục (Axial positions):hai phối tử nằm phía trên và phía dưới mặt phẳng xích đạo, dọc theo một trục thẳng đứng đi qua nguyên tử trung tâm và vuông góc với mặt phẳng xích đạo. Chúng được gọi là các phối tử trục.

Do đó, cấu trúc này không hoàn toàn đối xứng như hình tứ diện hay bát diện vì có hai loại vị trí liên kết khác nhau với độ dài liên kết và góc liên kết có thể khác nhau.

Đây là phiên bản chỉnh sửa và bổ sung cho section thứ hai của bạn:

Góc liên kết

Trong một phân tử có dạng hình học lưỡng chóp tam giác lý tưởng (không có cặp electron tự do và tất cả các phối tử đều giống nhau), các góc liên kết được xác định rõ ràng:

  • Góc xích đạo – xích đạo (Equatorial-Equatorial Angle): Góc tạo bởi hai liên kết bất kỳ nằm trên mặt phẳng xích đạo là $120^\circ$. Ba phối tử xích đạo và nguyên tử trung tâm cùng nằm trên một mặt phẳng.
  • Góc trục – xích đạo (Axial-Equatorial Angle): Góc tạo bởi một liên kết trục và một liên kết xích đạo bất kỳ là $90^\circ$. Mỗi phối tử trục tạo một góc vuông với mặt phẳng xích đạo.
  • Góc trục – trục (Axial-Axial Angle): Góc tạo bởi hai liên kết trục là $180^\circ$. Hai phối tử trục và nguyên tử trung tâm nằm trên một đường thẳng.

Do sự khác biệt về môi trường không gian, liên kết trục thường dài hơn và yếu hơn một chút so với liên kết xích đạo. Điều này là do các phối tử trục chịu lực đẩy mạnh hơn từ ba phối tử xích đạo ở góc $90^\circ$, trong khi các phối tử xích đạo chỉ chịu lực đẩy từ hai phối tử trục ở góc $90^\circ$ và hai phối tử xích đạo khác ở góc $120^\circ$. Sự hiện diện của các cặp electron tự do hoặc các phối tử khác nhau về kích thước/độ âm điện trên nguyên tử trung tâm có thể làm biến dạng các góc liên kết này so với giá trị lý tưởng.

Ví dụ

Một ví dụ điển hình và thường được trích dẫn cho dạng hình học phân tử lưỡng chóp tam giác là phân tử photpho pentaflorua ($PF_5$). Trong phân tử này, nguyên tử photpho (P) là nguyên tử trung tâm, được liên kết với năm nguyên tử flo (F). Ba nguyên tử F chiếm vị trí xích đạo và hai nguyên tử F chiếm vị trí trục. Các ví dụ khác về các phân tử trung hòa có cấu trúc này bao gồm photpho pentaclorua ($PCl_5$), asen pentaflorua ($AsF_5$), và antimon pentaclorua ($SbCl_5$).

Lai hóa

Theo thuyết lai hóa obitan nguyên tử, để hình thành năm liên kết đơn hướng về các đỉnh của một hình lưỡng chóp tam giác, nguyên tử trung tâm thường được mô tả là đã trải qua quá trình lai hóa $sp^3d$. Quá trình này bao gồm sự tổ hợp của một obitan $s$, ba obitan $p$ và một obitan $d$ từ lớp vỏ hóa trị của nguyên tử trung tâm để tạo thành năm obitan lai hóa $sp^3d$ tương đương về năng lượng nhưng khác nhau về định hướng không gian. Năm obitan lai hóa này sẽ hướng về năm đỉnh của hình lưỡng chóp tam giác, sẵn sàng xen phủ với obitan của các phối tử để tạo thành liên kết sigma ($\sigma$). Cần lưu ý rằng việc sử dụng obitan $d$ trong lai hóa cho các nguyên tố phi kim chu kỳ 3 trở đi đôi khi là chủ đề tranh luận, và các mô hình liên kết khác cũng có thể được sử dụng để giải thích cấu trúc này.

Okay, đây là phiên bản chỉnh sửa và bổ sung cho section này:

Ảnh hưởng của cặp electron tự do lên dạng hình học

Khi nguyên tử trung tâm trong một phân tử có số phối trí 5 (tổng số liên kết sigma và cặp electron tự do bằng 5) có chứa một hoặc nhiều cặp electron tự do (lone pairs), hình dạng phân tử thực tế sẽ khác đi so với cấu trúc lưỡng chóp tam giác lý tưởng. Theo lý thuyết VSEPR, cặp electron tự do chiếm nhiều không gian hơn và gây lực đẩy mạnh hơn so với cặp electron liên kết. Do đó, để giảm thiểu lực đẩy giữa các cặp electron, các cặp electron tự do luôn ưu tiên chiếm các vị trí xích đạo trong cấu trúc lưỡng chóp tam giác. Vị trí xích đạo có các góc lân cận lớn hơn ($120^\circ$) so với vị trí trục (chỉ có góc $90^\circ$), giúp giảm tương tác đẩy với các cặp electron khác.

Sự chiếm giữ vị trí xích đạo của các cặp electron tự do dẫn đến các dạng hình học phân tử phái sinh sau:

  • Một cặp electron tự do (Công thức chung $AX_4E$): Khi có một cặp electron tự do ở vị trí xích đạo, bốn phối tử còn lại sẽ sắp xếp thành dạng hình học bập bênh (seesaw). Ví dụ điển hình là lưu huỳnh tetraflorua ($SF_4$). Lực đẩy từ cặp electron tự do làm biến dạng các góc liên kết: góc giữa hai liên kết xích đạo còn lại nhỏ hơn $120^\circ$, và góc giữa liên kết trục và liên kết xích đạo nhỏ hơn $90^\circ$.
  • Hai cặp electron tự do (Công thức chung $AX_3E_2$): Với hai cặp electron tự do chiếm hai vị trí xích đạo, ba phối tử còn lại sẽ sắp xếp thành dạng hình chữ T (T-shaped). Ví dụ là clo triflorua ($ClF_3$). Các góc liên kết tiếp tục bị biến dạng mạnh hơn, góc giữa các liên kết F-Cl-F thường nhỏ hơn $90^\circ$.
  • Ba cặp electron tự do (Công thức chung $AX_2E_3$): Khi có ba cặp electron tự do chiếm cả ba vị trí xích đạo, hai phối tử còn lại sẽ buộc phải nằm ở vị trí trục. Điều này dẫn đến dạng hình học phân tử đường thẳng (linear). Ví dụ là xenon điflorua ($XeF_2$) hoặc ion triiodua ($I_3^-$). Góc liên kết giữa hai phối tử trục và nguyên tử trung tâm là $180^\circ$.

Tóm lại: Dạng hình học phân tử lưỡng chóp tam giác là một dạng hình học ba chiều quan trọng trong hóa học, đặc trưng bởi một nguyên tử trung tâm liên kết với năm nguyên tử khác, tạo thành hình dạng của hai hình chóp tam giác đặt đáy đối đáy. Hiểu về dạng hình học này giúp dự đoán các tính chất của phân tử, bao gồm độ phân cực và phản ứng hóa học.

Độ phân cực

Độ phân cực của một phân tử có cấu trúc dựa trên lưỡng chóp tam giác phụ thuộc vào tính đối xứng của sự phân bố các liên kết và các cặp electron tự do.

  • Một phân tử lưỡng chóp tam giác hoàn toàn đối xứng, như $PF_5$ (với tất cả năm phối tử giống nhau và không có cặp electron tự do), là không phân cực. Mặc dù mỗi liên kết P-F riêng lẻ là phân cực, sự sắp xếp đối xứng của chúng làm cho các moment lưỡng cực liên kết triệt tiêu lẫn nhau, dẫn đến moment lưỡng cực tổng cộng của phân tử bằng không.
  • Tuy nhiên, nếu có cặp electron tự do trên nguyên tử trung tâm hoặc nếu các phối tử khác nhau, tính đối xứng sẽ bị phá vỡ và phân tử trở thành phân cực. Ví dụ, $SF_4$ (bập bênh), $ClF_3$ (hình chữ T) đều là các phân tử phân cực do sự sắp xếp không đối xứng của các liên kết và sự hiện diện của các cặp electron tự do. Ngay cả $XeF_2$ (đường thẳng), mặc dù có hình dạng đối xứng, sự hiện diện của các cặp electron tự do có thể góp phần vào các tương tác phân cực tổng thể trong một số trường hợp, mặc dù moment lưỡng cực tổng cộng thường được coi là bằng không do đối xứng. Phân tử như $PCl_3F_2$ cũng sẽ phân cực vì các moment lưỡng cực của liên kết P-Cl và P-F không triệt tiêu nhau hoàn toàn.

Phản ứng hóa học

Dạng hình học phân tử ảnh hưởng trực tiếp đến khả năng phản ứng hóa học. Trong cấu trúc lưỡng chóp tam giác:

  • Các liên kết trục thường dài hơn và yếu hơn so với các liên kết xích đạo.
  • Các vị trí trục thường chịu sự cản trở không gian ít hơn từ các nhóm thế khác so với vị trí xích đạo (chỉ có 3 lân cận ở $90^\circ$ so với 2 lân cận ở $90^\circ$ và 2 lân cận ở $120^\circ$ cho vị trí xích đạo).

Do đó, các phối tử ở vị trí trục thường dễ bị thay thế hoặc tấn công bởi các tác nhân nucleophile hơn trong các phản ứng hóa học. Ví dụ, trong quá trình thủy phân $PCl_5$, các nguyên tử Cl ở vị trí trục có thể phản ứng ưu tiên.

Ứng dụng

Việc hiểu biết về cấu trúc lưỡng chóp tam giác và các dạng hình học phái sinh của nó là rất quan trọng trong nhiều lĩnh vực hóa học. Nó giúp giải thích cấu trúc và tính chất của:

  • Nhiều hợp chất của các nguyên tố phi kim nhóm 15, 16, 17, 18 (ví dụ: $PCl_5$, $SF_4$, $ClF_3$, $XeF_2$).
  • Một số phức chất của kim loại chuyển tiếp.
  • Các trạng thái chuyển tiếp hoặc chất trung gian trong các cơ chế phản ứng hóa học hữu cơ và vô cơ (ví dụ: trong phản ứng $S_N2$ tại silic).

Nó là một phần nền tảng của lý thuyết VSEPR và hóa học lập thể.

Ví dụ về một phân tử có dạng hình học lưỡng chóp tam giác: Phốt pho pentaflorua ($PF_5$).
Nguyên tử trung tâm: P
Số cặp electron liên kết: 5
Số cặp electron tự do: 0
Công thức VSEPR: $AX_5$
Dạng hình học: Lưỡng chóp tam giác

Tóm tắt về Dạng hình học phân tử Lưỡng chóp tam giác

Dạng hình học phân tử lưỡng chóp tam giác là một dạng hình học ba chiều quan trọng, đặc trưng bởi một nguyên tử trung tâm liên kết với năm nguyên tử khác. Hãy hình dung hai hình chóp tam giác đặt đáy đối đáy. Nguyên tử trung tâm nằm ở tâm của đáy chung, gọi là mặt phẳng xích đạo. Ba nguyên tử nằm trong mặt phẳng này được gọi là nguyên tử xích đạo, và hai nguyên tử còn lại nằm ở đỉnh của hai hình chóp được gọi là nguyên tử trục.

Các góc liên kết lý tưởng trong một lưỡng chóp tam giác là 120° giữa các nguyên tử xích đạo, 90° giữa nguyên tử trục và nguyên tử xích đạo, và 180° giữa hai nguyên tử trục. Tuy nhiên, sự hiện diện của các cặp electron tự do trên nguyên tử trung tâm có thể làm biến dạng các góc này. Cặp electron tự do luôn chiếm vị trí xích đạo do lực đẩy lớn hơn so với cặp electron liên kết.

Ví dụ điển hình của phân tử có dạng hình học lưỡng chóp tam giác là $PF_5$. Các phân tử khác như $SF_4$, $ClF_3$, và $XeF_2$ minh họa ảnh hưởng của cặp electron tự do lên dạng hình học, lần lượt tạo ra dạng “bập bênh”, hình chữ T, và đường thẳng. Lai hóa $sp^3d$ của nguyên tử trung tâm thường liên quan đến dạng hình học này.

Độ phân cực của phân tử phụ thuộc vào sự sắp xếp của các nguyên tử và cặp electron tự do. $PF_5$ là một phân tử không phân cực, trong khi $SF_4$, $ClF_3$ và $XeF_2$ là các phân tử phân cực. Dạng hình học cũng ảnh hưởng đến khả năng phản ứng của phân tử, với các nguyên tử ở vị trí trục dễ bị tấn công bởi các nucleophile hơn. Việc hiểu rõ về dạng hình học lưỡng chóp tam giác là rất quan trọng để dự đoán tính chất và phản ứng của phân tử.


Tài liệu tham khảo:

  • Miessler, G. L., & Tarr, D. A. (2014). Inorganic Chemistry (5th ed.). Pearson.
  • Housecroft, C. E., & Sharpe, A. G. (2008). Inorganic Chemistry (4th ed.). Pearson Education Limited.
  • Atkins, P., & de Paula, J. (2010). Atkins’ Physical Chemistry (9th ed.). Oxford University Press.

Câu hỏi và Giải đáp

Tại sao cặp electron tự do trong phân tử lưỡng chóp tam giác luôn chiếm vị trí xích đạo chứ không phải vị trí trục?

Trả lời: Cặp electron tự do chiếm nhiều không gian hơn và gây ra lực đẩy mạnh hơn so với cặp electron liên kết. Ở vị trí xích đạo, cặp electron tự do chỉ đẩy mạnh với hai cặp electron liên kết ở vị trí trục (góc 90°). Nếu ở vị trí trục, nó sẽ đẩy mạnh với ba cặp electron liên kết ở vị trí xích đạo (góc 90°), dẫn đến lực đẩy tổng cộng lớn hơn. Do đó, vị trí xích đạo là vị trí ổn định hơn cho cặp electron tự do, giúp giảm thiểu lực đẩy và năng lượng của phân tử.

Cơ chế giả chuyển Berry diễn ra như thế nào và làm thế nào để quan sát được nó?

Trả lời: Giả chuyển Berry là một quá trình dao động phân tử, trong đó hai nguyên tử trục và hai nguyên tử xích đạo đổi chỗ cho nhau thông qua một trạng thái chuyển tiếp dạng hình vuông phẳng. Quá trình này diễn ra nhanh chóng ở nhiệt độ phòng và có thể được quan sát bằng phương pháp cộng hưởng từ hạt nhân (NMR). Ở nhiệt độ thấp, NMR có thể phân biệt được tín hiệu của nguyên tử trục và xích đạo. Tuy nhiên, khi nhiệt độ tăng, giả chuyển Berry xảy ra nhanh hơn, làm cho các tín hiệu này hòa vào nhau thành một tín hiệu duy nhất.

Ngoài $PF_5$, hãy cho thêm một số ví dụ khác về phân tử có dạng hình học lưỡng chóp tam giác.

Trả lời: Một số ví dụ khác bao gồm $PCl_5$, $AsF_5$, $SbCl_5$, và $IF_5$. Lưu ý rằng $IF_5$ có một cặp electron tự do, do đó nó có dạng hình học hình vuông chóp chứ không phải lưỡng chóp tam giác hoàn hảo.

Làm thế nào để xác định độ phân cực của một phân tử lưỡng chóp tam giác?

Trả lời: Độ phân cực của một phân tử lưỡng chóp tam giác phụ thuộc vào sự đối xứng của phân tử. Nếu phân tử đối xứng hoàn hảo như $PF_5$, các moment lưỡng cực liên kết sẽ triệt tiêu lẫn nhau, dẫn đến phân tử không phân cực. Tuy nhiên, nếu có sự không đối xứng, ví dụ như do sự hiện diện của cặp electron tự do ($SF_4$) hoặc các nguyên tử khác nhau liên kết với nguyên tử trung tâm ($PCl_2F_3$), phân tử sẽ phân cực.

Tầm quan trọng của dạng hình học lưỡng chóp tam giác trong hóa học là gì?

Trả lời: Dạng hình học lưỡng chóp tam giác rất quan trọng vì nó ảnh hưởng đến các tính chất của phân tử, bao gồm độ phân cực, khả năng phản ứng, và phổ NMR. Hiểu về dạng hình học này giúp dự đoán và giải thích các tính chất và phản ứng của các hợp chất hóa học, đặc biệt là trong hóa học vô cơ và hóa học phối trí. Nó cũng giúp chúng ta hiểu về các cơ chế phản ứng, ví dụ như trong phản ứng SN2 của các hợp chất silic.

Một số điều thú vị về Dạng hình học phân tử Lưỡng chóp tam giác

  • Sự linh hoạt giả định: Mặc dù hình dạng tĩnh của lưỡng chóp tam giác cho thấy các nguyên tử cố định tại vị trí của chúng, nhưng trong thực tế, các phân tử lưỡng chóp tam giác thường trải qua một quá trình gọi là giả chuyển Berry. Đây là một cơ chế mà các nguyên tử trục và xích đạo “đổi chỗ” cho nhau một cách nhanh chóng, làm mờ ranh giới giữa hai loại vị trí này trên thang thời gian NMR. Hãy tưởng tượng việc bóp nhẹ hai đỉnh chóp của lưỡng chóp tam giác, làm cho chúng xẹp xuống và đồng thời đẩy hai nguyên tử xích đạo lên trên, tạo thành một hình chóp tam giác mới với hai nguyên tử ban đầu ở trục giờ nằm ở xích đạo.
  • Không phải lúc nào cũng là $sp^3d$: Mặc dù lai hoá $sp^3d$ thường được dùng để giải thích dạng hình học lưỡng chóp tam giác, các nghiên cứu gần đây cho thấy sự tham gia của orbital d có thể không đáng kể như trước đây vẫn nghĩ. Trong một số trường hợp, mô hình lai hóa chỉ sử dụng orbital s và p, kết hợp với thuyết liên kết ba tâm bốn electron, có thể mô tả chính xác hơn sự liên kết trong các phân tử này.
  • Sự đa dạng về các hợp chất: Dạng hình học lưỡng chóp tam giác không chỉ giới hạn ở các hợp chất đơn giản như $PF_5$. Nó cũng xuất hiện trong các phức chất kim loại chuyển tiếp, nơi kim loại trung tâm được phối trí với năm phối tử.
  • Vai trò trong cơ chế phản ứng: Dạng hình học lưỡng chóp tam giác đóng vai trò quan trọng trong một số cơ chế phản ứng, đặc biệt là trong phản ứng SN2 (phản ứng thế ái nhân bậc hai) ở các hợp chất silic. Trạng thái chuyển tiếp của phản ứng này thường có dạng lưỡng chóp tam giác.
  • Tính hiếm gặp trong hóa học hữu cơ: Trong khi dạng hình học lưỡng chóp tam giác khá phổ biến trong hóa học vô cơ, nó lại hiếm gặp hơn trong hóa học hữu cơ. Carbon, nguyên tố trung tâm trong hầu hết các phân tử hữu cơ, thường không tạo thành năm liên kết do không có orbital d ở lớp vỏ hoá trị.

Những sự thật này cho thấy sự phức tạp và thú vị của dạng hình học lưỡng chóp tam giác, vượt ra ngoài mô tả đơn giản về hình dạng và góc liên kết. Nó đóng vai trò quan trọng trong việc hiểu cấu trúc, tính chất và phản ứng của nhiều loại hợp chất hóa học.

Nội dung được thẩm định bởi Công ty Cổ phần KH&CN Trí Tuệ Việt

P.5-8, Tầng 12, Tòa nhà Copac Square, 12 Tôn Đản, Quận 4, TP HCM.

PN: (+84).081.746.9527
[email protected]

Ban biên tập: 
GS.TS. Nguyễn Lương Vũ
GS.TS. Nguyễn Minh Phước
GS.TS. Hà Anh Thông
GS.TS. Nguyễn Trung Vĩnh

PGS.TS. Lê Đình An

PGS.TS. Hồ Bảo Quốc
PGS.TS. Lê Hoàng Trúc Duy
PGS.TS. Nguyễn Chu Gia
PGS.TS. Lương Minh Cang
TS. Nguyễn Văn Hồ
TS. Phạm Kiều Trinh

TS. Ngô Văn Bản
TS. Kiều Hà Minh Nhật
TS. Chu Phước An
ThS. Nguyễn Đình Kiên

CN. Lê Hoàng Việt
CN. Phạm Hạnh Nhi

Bản quyền thuộc về Công ty cổ phần Trí Tuệ Việt